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Abstract

A decision problem is characterized by a loss function V

and opinion H. The pair (V,H) 1is said to be strongly stable iff
w
-

J w
for every sequence Fn = H. Gn H and Ln = I wn -+ V. uniformly,

(i n

lim 1im sup [ L (9,D (e))dF (9) - int L,(®,D)dF (8)]) =0
E‘O n->o D

for every sequence Dn(E) satisfying

r r

W (9,D (€))dG (8) < inf W (

6,D)dG_(8) + €.
D

We show that squared error loss is unstable with any pair it the
parameter space is the real line and that any bounded loss function
v(e,D) that is continuous in @ wuniformly in D 1is stable with any
opinion H. Finally we examine the estimation or prediction case
V(9,D) =h(8-D), where h 1is continuous, non-decreasing in (0,m)
and non-increasing in (-m,O) and has bounded growth. While

these conditions are not enough to assure strong stability, various

conditions are given that are sutticient.

We believe that stability offers the beginning ¢. a Bayesian Theory
of robustness.
Key words: Decision Theory, Robustness, Stable Estimation, Stable
Decisions

AMS Classif'ication: Primary 62C10, Secondary 62G35




Stable Decision Problems
by
Joseph B. Kadane and

David T. Chuang

alz Introduction

"Subjectivists should feel obligated to recognize that
any opinion (so much more the initial one) is only vaguely acceptable.
(I feel that objectivists should have the same attitude.) So it is
important not only to know the exact answer tor an exactly specified
initial position, but what happens changing in a reasonable neighbor-
hood the assumed initial opinion" de Finetti, as quoted by Dempster
[1975].

A well known principle of personalistic Bayesian theory
is that no one can tell someone else what loss function to have or
what opinion to hold. Having said that, the reasons for looking
into properties of particular choices of loss functions and opinions
might be obscure.

The standard of personalistic Bayesian theory may be too
severe for many of us. Generally when a personalistic Bayesian tells

you his loss function and opinion, he means them only approximately.

He hopes that his approximation is good, and that whatever errors he may

have made will not lead to decisions with loss substantially greater

than he would have obtained had he been able to write down his true

loss function and opinion. There are two special cases that have been




considered. In the first, one cannot (or need not) obtain one's

exact prior probability. Stone [1963] :tudied decision procedurss
with respect to the use of wrong prior distributions. He emphasized
the possible usetulness of non-ideal procedures that do not require
full specitfication ot the prior probability distribution. Fishburn,
Murphy and Isaacs [1967] and Pierce and Folks [1969] also discussed
decicion making under uncertainty whén the decision maker has
difficulty in assligning prior probablilities. They outlined six
approaches that may te used to assign probabilities. 1In the second
case, one cannot obtain one's exact utility function. Britney and
Winkler [1974] have investigated the properties of Bayesian point
estimates under loss tunctions other than the simple linear and
quadratic loss functions. They also discussed the sensitivity of
Bayesian point estimates to misspecification in the loss function.
Schlaifer (1959] and Antelman [1965] discuss relating the utility
of the optimal decision to the utility of suboptimal decisions in
certain contexts.

The closest related work, however, is the material on stable
estimation in Edwards, Lindeman and Savage [1963]. They propose
that there is data such that the likelihood function will be
suft'iciently peaked as to dominate the prior distribution. The criterion
tfor robustness 1s that the densities ot various possible posterior
distributions are close. This paper extends that analysis by allowing
a loss function, and by allowing a sequence of opinions (prior or
posterior), without inquiry into whether the source of uncertainty

might be the prior or the likelihood function. We see no reason why

the likelihood function is known more surely than the prior distribution.




To give an initial formalization of our question, suppose

that the parameter space is Gc:Rk for some k, and the decision
space is d c Rz for some &. 1t Fm(e) is my (approximate) opinion
over © €@, and L&(G,D) my (approximate) loss function, the

(approximate) loss of the decision problem to me is

(1) W = e | 5 (8.D)0F (a),

D e®
which is here assumed to be tfinite. Then for every € >0, there is

a decision D _(e) which is ¢ -optimal,that is
p
(2) L (8,D (e))dF (8) <W_+e¢

Suppose, however, that my "true" opinion over €@ 1is on a
sequence Fn(Q) which converges to Fw(a) in distribution. Then
the probability of any subset of @ 1is nearly the probability given
by F_(8). Also suppose that my "true" loss function over @ is
Ln(e,D) which converges uniformly ;n g eand B to L&(G,D). Then

* |
there is a sequence of "true" losses generated |

n
w. = inf L. (6,D)dF_(9)
R 5

and a sequence of losses generated by behaving according to the

approximate opinion and loss function:

n

wy = L (8,0 (€))dF ()

The worth of knowing the truth is then




w2 s

G- R,

which is always non-negative. Note that Bn is a function

o e Dle), n, L, and F, . Suppose that

ey

(3) lim  lim sup B = 0
€dO n-> o

w
for every choice of Ln > Lm uniformly, Fn -> Fm, and every choice

of D _(e) satisfying (2). 1In this case, the pair (L ,F ) is
called strongly stable (by Definition 1). The above definition makes i

sense since, the non-negativity ofr Bn implies that, for each e,

lim sup BnZO .
n->ow
Further, as e decreases to zero, the set of possible choices Qw(e)

is non-increasing. Thus the possible values of 1lim sup Bn is monotone
n->o

and bounded below by zero. Thus the limit in (3) exists.
There are situations in which (5) holds for every choice
of Ln"Ib uniformly and Fn f F _, but only for some particular choice
D_(e). 1In this case, D (e) 1is called the stabilizing decision, and
the pair (Ib’Fm) is called weakly stable (by Detinition 1). If
(Lw,Fm) is not stable-(either strongly or weakly), it is called unstable.
The mofivation for thesze definitions is that it an opinion and
.0ss function are strongly stable, then small errors in either will not
result in substantially worse decisions. 1If on the other hand, a

Bayesian t'inds that the loss function and opinion he has written down

are unstable, then he may wish to reassess his loss function and

opinion to be certain that no errors have been made. When he finds he




has written down a loss function and opinion which is weakly but

not strongly stable, a Bayesian may choose to make the stabilizing
decision to have protection against errors in either the loss function
or opinion.

From a more general point of view we can formulate our

problems as follows: Take (L. ,F,) as a sequence ot truths, and (wn,cn)

as a sequence of approximations where °

Now act as 1if (wn, GJ were true and evaluate at Ln’ Fn:

Let Dn(e) be defined by

() f Wn(e,Dn(e))dGn(e) < int wn(e,D)dGn(e) + €
D

If for every such choice of Dn(e),

(5)38 ll:}ln_l)osoup [, L,(8,D,(€))dF (0) - 181‘ L,(e,D)dF,(8)] = ©
then (V,H) 1s strongly stable (by Definition 2
‘If there 1s some choice of Dn(e) which makes (5) hold, then

(V,H) is weakly stable and Dn(e) is the stabilizing decision (by

Definition 2).




In this paper, this second set of definitions is used
throughout. We conjecture that the definitions are equivalent.
However the second definition permits the reader another interpretation:
the apparent truth can be on a sequence (Ln’Fn) approaching the
fixed truth (V,H). Detinition 2 allows both the apparent truth
(L,»F,) and the actual truth (W ,G, ) to be sequences, and is thus
most general. :

Section 2 introduces Detinition 3, which is apparently simpler
than Definition 2, and shows its equivalence to Detfinition 2. Then
some simple examples are given. In Section 3, bounded loss functions
that are continuous in the right way are examined, and shown to be
strongly stable when paired with any opinion. Finally Section 4
takes up estimation (or, equivalently, prediction) loss tunctions

>t to a Lipschitz condition restraining its growth, and finds

of them strongly stable, and some unstable. To simplify

matters, assume the one-dimensional case (k = & = 1).

S—
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2. A General Structure Theorem and Some Examples

In the t'irst part of this section we introduce yet another
definition of strong (weak) stability, Det'inition 3 and show that
it is equivalent to Definition 2. The greater simplicity of
Definition 3 helps to simplifly the rest ot the paper.

Suppose F Y H and Gntg B Let Dn(e) be det'ined by

(6) fv(e,Dn(e))dGn(e) £ int j V(9,D)dG, (8) + €.
D

If, for every such choice of Fn’ Gn’ and Dn(e),

(7) lim 1im sup [I V(G,Dn(e))an(e) - 1nff v(e,D)an(e)] =0
evO N ¥+ w D

then (V,H) 1is strongly stable (by Definition 3). If there is

some choice of Dn(e) which makes (6) hold, then (V,H) is weakly

stable and D (e) 1is the stabilizing decision (by Definition 3).
Now we can state

Theorem 1 (V,H) 1is strongly (weakly) stable by Definition 2 if and

only if (V,H) 1is strongly (weakly) stable by Definition 3.

Proof: 1If (V,H) 1is strongly (weakly) stable by Definition 2, one

of the allowable choices for Ln and Wn is Ln==wn==V tortalls m.

Strong (weak) stability by Definition 3 then follows trivially.
Suppose, then, that (V,H) is strongly (weakly) stable by Definition

5, and suppose that Ln and wn are arbitrary sequences of loss

functions converging uniformly in 8 and D to V. Choose €>0,

and let D (e) be defined by equation (4).




Choose N1 > yn2> Ny,

|w,(8,D) - v(8,D)| < ¢ for every 6 and D, using the uniform

convergence of wn te V. Then

int' _f Wn(S,D):jGn(Q) - inf J"v(e,D)dGn(e)
D D

W

lnfj'wn(e,n)dcn(e) - ian'(.V(e,D) -w (e8,D )+wn(e,D))dGn(9)
D D

< - me (8,D))dG,(8)

< Supj (8,D) - V(8,D))dG, (8)

< €

Also ianwn(e,D)dGn(e) - inf jv (8,D)dG, (8)
D D

E ian (6,D) - v(8,D) +V(6,D))dG (8) - inf J'V(e,n)dcn(e)
D

> 1nf~[(wn(e,D)-v(e,D))dGn(e)>-e.
D
Then | inf [ W (8,D)dG (8) - inf IV(Q,D)dGn(GH < €.
D D

Also | f W, (9,D, (€))dG (8) - [ V(0,D,(€))da, (8)| <e

[v(e,p,(e))dG, (0) - inf [Vv(s,D)dG, (8) <
D




| [vte. (e))ae (o) - [ W _(a,D_(e))do ()]

+ | [ W (e,D (€))aG,(8) - 1inf | W (3,D)ag, (o)
D

+ | 1nffwn(q,D)aGn(a) - inff V(9,D)dG (8)] < 3e
D D

Hence if Dn(e) is e-optimal for (W ,G ), it is 3e-optimal
for (V,Gn), for all n > N;. Choose 6 >0. Then by the uniform

convergence of B e Vi @No 3 VngiNg
|z (8,D) - v(e,D)| < 5.

By exactly the same argument as above, substituting Ln for

W and Fn for G

o g WE have

| int |1 (8,D)dF, (6) - inf [ V(a,D)dF_(a)| < 6.
D D
Alse. - | J." L,(8,D (e))aF (8) - Jr- V(e,D,(€))dF (0)]| < 8.

Hence y6>0 4N, 3 yn > Ny,

|0 [L,(e,D (e))dF, (8) - inf [ L _(e,D)dF, (0)] -
D

IIV(e,Dn(e)an(e) - inffv(e,p)dpn(e)]l < 2s.
D

Thus

1lim sup [ I Ln(G,Dn(e))an(G) - inf.an(e,D)an(e)]
n- o D

s A A S

2 wsname




40

= 1lim sup [y[v\U,Dn(e))an(e) - inf J.V(G,D)an(e)].

n->o D

/

Finally, taking Dn(e) defined by (4), €’ =3%e and Dé(e')
det'ined by (6),

lim  1lim sup [} L (8,D (€))dF (68) - inf ILn(e,D)an(e)] -
evO n->o 2 D

eWO n->w

lim  1im sup [ [ v(e,D/(e’))aF,(8) - inr [ V(e,D)dF, (8)] = O.
D
Thus if (V,H) 1is strongly (weakly) stable by Definition 3, it i

is strongly (weakly) stable by Definition 2.
Q.E.D.

When stability is referred to in the rest of this paper, i

Definition 2 (or equivalently, Definition 3) is to be understood,

e o

unless otherwise specified.
Example 1. Composite hypothesis, composite alternative.
Suppose that there are only two available decisions [1,2},

and suppose that V 1s defined as follows:

Vv(e,1) = 0 and V(6,2)

]
&

L 8 < aj

v(6,1) = ¢ and  V(8,8) =0 1L 9 > a,
where b and c¢ are assumed to be positive.
Then Fok if bG,la) > c(1-G,(a)) + €

D,(€) = 2 if bG (a) < c(1-G.(8)) - «
either if c(1-G,(8))=-€ < bG, (a) < c(1-G,(a)) + €

:
b
$
i
)
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c(1-F (a)) 1f bG (a) > c(1-a6,(a)) +e

_PV(e,Dn(e))an(e) = (‘ bFn(a) if bGn(a) < c(l-Gn(a)) -€

D

either(depends on Dn(e)) % g c(l-Gn(a)) -€e <
bG (a) < c(1-G (a)) +e

jv(e,Dn(e))dF 8) - 181 ‘rv(e,D)an(e)

4

( max {0, c(1-F (a))-bF (a)], 1f G (a) > SrE
n n n
b+c
=§ nex {0, B (&) - cll-F Gal)l, 1F G la) ¢ ==%
n n n
DY
\ either of above (depend on D_(e)) if &£=£ < G (a) ¢ &€
n = "n =
b+c b+c
Suppose H(a-) < < H(a).
b+c
Ten & €S0 3 Hlas)-g EAE G SES LA m Y,
b+c b+c
an
Take G, to be a sequence such that
*
G (a) » 8" where i gl H(a).
o b+c
Take Fn to be a sequence such that
: ** C -
i | F (a) » 6 " where H(a-) < 8 < 2,
! n b+c

Then for large enough n, Dn(E) = . gnd

. J'V(e.Dn(e))an(e) i (V(Q’D)an(e)

N = max {0,c(1-F, ) ) - bF, (&)} -




‘
1
1
|
| |
!

3

12.
45 n*w,clt-F (a)) ~ bF, (a)
o ~ ihtcla >oe~(bre) == ~e>0:
b+c
Hence
r e ]
lim 1lim sup[Jv(a,Dn(e))an(e) - int V(e,D)dF (8)
€40 n->ow D
* %
= c-(b+tc)e >0,
so (V,H) 1is unstable in this case.
Similarly we can show if H(a-) < £ = H(a) then (V,H)
L0} = (e
is weakly stable and the stabilizing decision is 2 . So we can
see (V,H) 1is unstable iff H(a-) < — < H(a), weakly stable
b+c
416 4 & H(a-) €=t = H(a), with 2 being the stabilizing decision, and

b+c
strongly stable otherwise. 1In particular, if H 1is continuous

at a then (V,H) 1is strongly stable.

Example 2. Simple hypothesis, composite alternative.

An alternative two decision problem can be defined as follows:

Let
V(e, 1) = 0e&and V(g, 2) = b if 8 = a
V(a, 1) = cand V(n, 2) =0 if 0 # a .
b, ¢, >0
Let J.(a) = F (a) - F (a-) and
K, (a) = G (a) - G (a-).

Then the calculation of B , formula (4), 1is exactly as example 1

with J replacing F and K replacing G.

——

ISP, e ——




;
|
:
s
g
|
f.,

Thus ¢ max {0,c(1 —Jn(a)) ~an(a)) if Kn(a) e
| b+c
1

¢ : c-€

By, = § max {o,bJ (a) ~c(1-J (a))} if K (a) < :
! + C

elther the above if == ¢ K (a) < i

b+ c b+c

From this it is easy to see that (V,H) is

(1) strongly stable if H(a) - H(a-) < ==
b+c
(ii) weakly stable if H(a) - H(a-) = bc
+c

(the stabilizing decision is 2)

e
b+e

(1i1) unstable if H(a) - H(a-) >

ample 3. Squared Error Loss.

asiderf. o - R the real line, and the pair

y

((8-D)2,H) for any opinion H(8) with finite variance.

Let Gn = H yn, and let u ~and oi be the mean and variance
of H(8), which we assume exists

Then

2!

00

fV(G,D)dH(O) = 6% + (u_ - D)

When D = M Wwe achieve the infimum 05 and for every € >0,

and every Dn(e),




By finiteness of oi, the infimum value is finite. Let Fn(e) be a

convex combination of H(8) and Jn(e) with weights (1-3) and %, {
n

where Jn(e) is the distribution function of the random variable sure

to take the value 6 =n. Also let My the mean of Fn. Then

1
Un = (1-}-1-) uoo+1’ and

S R e I

lim sup [fV(f-\,Dn(e))an - 1BfIV(e.,D)an(n)]

n->ow

= 1im sup [I{(E)-Dn(e))2 - (e-un)e}an(G)]

n->o

= (u,-D_(e))?

v
—
[EN
]
ls
i
3
n

> (1- ¥D)Z,
Thus, for any opinion H(8) with finite variance, the pair ((s -D)2,H)

is unstable.
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%, Bounded continuous loss functions

The distinction between two concepts of uniform continuity
of a function f(x,y) of two variables is important in the sequel:

f is called continuous in x uniformly in y iff

Ye>0, Vx, 86>03 vy, |x-x0|<6_=‘f(x,y)-f(xo,y)l < €3}
f 1is called uniformly continuous in x wuniformly in Yy ifs

Ve>0 E6>03 vx vy |x-xyl <8 = |£(xy) - f(xe¥)| <e-

The following lemma shows that these concepts are related

in the same way that continuity and uniform continuity are.

Lemma 1: Suppose f(x,y) is continuous in x wuniformly in y
on a compact set xe€S. Then f 1is uniformly continuous in x

uniformly in y.

Proof: Suppose the contrary. Then Fe€>0 3 v¥b6>0 EX,y 3 |x-x0| < 16

and |f(x,y) - £f(x5,¥)| > € choose ..3 5,>0 and 6 >0. Then there

815650

exist a > O and sequences u, and Vik in 8 sueh thas,

lu -v,l <6 and |f(u,y,) - £(vy,y,)| >a

Compactness of S 1implies that u, have a limit point € € S and
i must have the same limit point. Take 6 >0 be arbitrary small.

v lie within 6 of €. But this

Then infinitely many pairs U vV

contradicts the continuity of £ at £ uniformly in y.

Q.E.D.
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Lemma 2: Suppose that

() |(¥(s,D){ < B for all & and D

(11) v(e,D) 1is continuous in 6 wuniformly in D

w
(111) B, * H
then
ve>0 ENayn>N v |§ v(e,D)a(d (e) -F (8))] <e-
Proo* € >0. Choose a and b, points of continuity of
BT 6., ¢ H(a) < e, 1-H(b) < €. In the closed interval

(a,b] the function V(e,D) is uniformly continuous in 8§
uniformly in D, by Lemma and Assumption (ii). Then there

exist points of continuity of H(8) in [a,b]

a = ao < a1 LR & as = b  such that

|v(e,D) - V(ay,D)| < €

for all D and for 8y =9 £ a1 k=05 5=l

V(ay,D) a, <0<, keO,...,5-1
Let VG(G,D)=

0 otherwlse

Then for any distribution function G(8),
s-1
§ve(e.0)aa(e) = 2 V(ay,D) [Glayy) - Glay)).

Since Fn(e) > H(8) as n>« at 6 = a,
§v (e,D)aF, (8) > §v_(6,D)a E(8) VD

and since s 1s finite, the above occurs uniformly in D.




Thus

ve>0 3N vynyN vD | v (8,D)(a(F,(0) - H(e)))| < e

For any distribution function G(6)

IIV(B,D) - V€(6,D)|dG(6) = Ia |v(e,D) -VG(B,D)ldG(e)

b )
+ Sa |v(8,D) - Ve(e,D)ldG(e) + Ib |v(e,D) - V€(6,D)|dG(6)

< BG(a) + € [G(b) - G(a)] + B[1 -G(b)] VD.

Applying this to H(8) yilelds

S|v(e,D) - ve(e,D)ldH(e) < (2B+1)e.

Applying it to Fn(e) and noting that

F,(a) > H(a), F.(

b) - I{(b), yields that, for large enough
I|v(e,n) - v_(8,D)| aF(6) < (2B+2) €.

Then 3N ¥n>N VD
IfV(e,D)an(e) - f V(e,D)d H(8)|
l < | fivee.n) - v (e,0)1ar,| + | [ (6,D)[aF,(0) - aH(0)]]
+ | I(V(e,D) - v (8,D))dH (8)]
< (2B+2) € + € +(2B+1) e = (4B+4) €.

I ' Since € 1s arbitrary, Lemma 2 1s proved.

i{s continuous in 0 uniformly in D. Then (V,H) 1is strongly stable.

Theorem 2: Suppose (1) |v(e,D)| < B for all 6 and D . (i1) v(e,D)
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Proof: By Lemma 2, ye€>0 3 N1 2 Vn>N1, yD

IIV(G,D)d(H(e) -F_ (0))] < €, and

AN, > vno > N,, V¥D

| IV(G,D)d(H(O) -G, (0))]| < e
Then ¥y n > max (Nl,Ng), vD

J'v(e,D)an(e) - fV(e,Dn(e))an(e)

> (IV(G,D)dH-e) X (IV(S,Dn(e))dH(G) +€)

v

fv(e,D)dH " fV(e,Dn(e))dH - 2¢

v

(IV(B,D)dGn-e) - (“‘L(E),Dn(e))chn + €) =2¢
> [v(e,D)as,, - fv(e,p,(e))ac, - he

L =D Ea
So

f r
lim 1im sup[int 'V(a,D)dF _(a) - 'V(8,D (€))dF i
€30 nNn-o>w e ) n( ) J ( n( )) n(e)] 0

Q. E.D.

Example 4: Take the same example as example 3, only restrict the
domain, so that #=0=C where C 1is some compact subset of R.

Then squared error satisfies the condition of Theorem 2, and is

therefore strongly stable when paired with any opinion H.




4., Estimation or Prediction Loss Functions with Bounded Growth

In this section, the tollowing assumptions are frequently used:
(i) V(9,D) = h(#-D), where h 1is continuous, non-decreasing in
(0,»), non-increasing in (-»=,0) and h(0) =0.
(i1) h satisfies the following Lipschitz condition in the tail:
|h(x) -n(y)| < Blx-y| tor all ¥l > Yoo @ll X, and for

some constant B> 0.

Note that in this section B represents a bound on the growth of h.
However h 1itself may be unbounded. The following example shows
that assumptions (i) and (ii) are not surficient to ensure stability.

[x} 1P Lex

Example 5: Let
h(x) = {

1 otherwise

and let H(®) be the distribution function of any random variable
that has a finite mean. Let G (8) = H(8). Then D (e) 1is defined

as any decision D satisfying

J.h(e—Dn(e))dH(e) < inf sh(e-D)dH(e) + €.
D
First we show that D (e) 1is bounded below for sufticiently small
€>0. Let d be a median of H. We show that D (e)<d -2
leads to a contradiction for ¢ < # as follows: Let d < 4 =g

© d-1 d*- 00
(n(6-a) - n(e-a"))aH(n) = -
j'h d) -h(e-d ))dH(s -‘[o+j1+ :ji' +f*

%1 %

(h(e=-d) -h ed))dH()




d-1 d a*-1 0
= I (1 -21)dH(e) + j ((d-e)=~1)dH(e) + I((e—d)-i)dH(a)
-00 d-1 d

d P
& j ((a-d) - (d*-e))dH(G) 4 J ((9-d)—(e-d*))dH(9)

J‘ ((d-a)-1)aH(0)

d-1 d

v
e
-
Q
1
(o
|
—
N—
Q
jos
—~
@
SN
-+

(a*-1-d) - (¢"-d+1)aH(p) + #(d"-q)

i
*x &—5 0

d -1

*

d
S I dH + 2(d -d)
4-1

* d
> - &+ #(d -d) > 8.
* 3
Hence we must have Dn(e) >d -2 1if <%,

Let F (Aa) be a convex combination of H(8) and J (8)
with weights (1-1/n) and 1/n respectively, where Jn(e) is

the distribution function of the random variable sure to tai: the

value 6 = 2n + D (€). Then
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[v(e,p, (e))ar,(0) - inf [v(e,D)dF,(8)
D

Ih(e-Dn(e))an(e)- ini‘.[h(e-D)an(e)

D
> Ih(e-Dn(e))an(G) -Ih(e-Dn(e)-zn)an(e)
-l (2n+D (e) - D (¢)) + (1 -1/n) _[h(e-Dn(e))dH(e)
n
- (2-1/n) [ n(a-p () - 2n)dH(e)
D,(€)+2n &
5 @ | h(e-D(e)-2n)aH(a) - [  n(e-D (e)-2n)dH(s)
e D, (e)+2n
2 el f AdH(8) + f (2n+D _(e€))dH(e).
D, (€)+2n D,(€)+2n

*
Now since Dn(e) is bounded below by d -2, Dn(e)+2n > .

The existence of the mean of H 1implies that

(]
lim IedH(e) = 0,
a

a->ow

So the first integral above approaches zero. Similarly the

existence of the mean also implies that

- < S
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Il

[ (en+p,(c)an(e) (2n+D_(e)) (1 - H(2n+D_(e)))~ 0.

D,(€)+2n

(see Feller, 1966, p. 149, line 5). Hence

l1im  1lim sup [J'V(Q’Dn(€»an(9) 3 inf(rV(e,D)an(G) Bt

ev0 n-> o D

so (V,H) 1is unstable.

Lemma %: The pair (V,H) is strongly stable if, in addition to
conditions (i) and (ii), the following condition (iii) obtains:
(ii1) There is a compact interval [a,b] and an €y>0
such that for every €, 0 < € < €5s every sequence an-> H, and
every sequence of e-optimal decisions DysDosee for (V’Gn)’

there is an N such that for all n>N, D€ [a,b].

Proof: Without loss of generality we may assume b > Yor and
a < =Yor

Since h 1is continuous in [a,b], h 1is uniformly continuous
in [a,b]. Thus given € >0, there exists a &6 >0 such that for
every x,ye [a,b], |h(x)-h(y)|<e 1if |x-y|<8. Choose
6 < (b-a)/2. Now there is a finite open covering of [a,b]

{(eyrdy)[1=1,2,...,K} such that d;-c; < min{6,e} for all

i=1,2,...,K. Let e;e(c;,d,). We now proceed to show that

In(e-e,) -h(e-ej)l is bounded. Without loss of generality,
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Jet e.>e,. Also let D = Max a and C=Min cy-

I ) af

s e T —

{a) ‘If 8§ >» e; +b, then

Ih(e-ei)-h(e-ejﬂ < Bl (8-ey) - (e-ej)l =B|ei—ejl < B(D-C).

6 T ei+b>e_>_eJ.+b, then

In(e-e;) -n(8-e;)| <In(6-e;) - n(b)|+[n(b) - h(8-e4)]
5h(b)+h(b+D-C)+B|b-e+ej|
< h(b) + h(b+D-C) + B(D-C) -

() If eyj+b>Aa>a+e;, then

Ih(e-e;) -h(e-ej)l < h(b) +h(a)

since (e-ei) ¢ [a,bl; (e-ej) ela,bls

(d) 1r e;+a>f>a+ey, then

In(a-e,) -h(e-ej)lg In(e-e;) -hn(a)| + |n(a) -h(.n-ej)|

< Bl8-e; -a] + h(a) +h(a+D-C)

Il

B(a+e; -8) +h(a) +h(a+D-C)

< B(D-C) + h(a) + h(a+D-C).

(e If a+e,>06, then
J

In(e -ey) —h(e-eJ)| < Blei-ejl <B(D-C).
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Thus |h(8 -e;) -h(e - eJ.)I 1{s bounded. By the Helly-Bray

theorem there exist Ni and Mi 5 yn > Nij

J J

| J(v(ey.0) - V(eyu0))ar, (0) - [ (V(ey,0) - V(ey,0))dH(0)| <&,

and Vn>Mij’
| [(v(e;.0) - V(ey,0))ac,(a) - .I(V(ei,e) - V(ey,0))dH(8) | < e

Let N, = max(

x NppoNygseeesNy g per MypaMymseeesMy gy 1)

Now suppose tle(cidi) and tge(ci,di) for some 1i. Our
purpose is to bound |h(9-t1) -h(ﬂ.-tz)l. Without loss of generality,
assume t1>t2.

(a) ' 1If 8>t +b, then
In(e-t,) -h(8-t,)| < Blt;-t,| < Be.
(b) If t;+Db>0>t,+b, then

|h(e-t;) - h(8-t5)| < [n(8-ty) -n(b)| + [n(b) - h(e-t,)]
< e+ Bla-t,-b|l < e+Be = (B+l)e.

(ey 1If t,+b>0>a+t,, then

b>9-t2>9-t12a, and

[(6-t1) -(8-t,)] = |t -t,] <&,

Thus |h(8 - t;) -nh(e-t,)| < e.
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(d}y . If a+t;>8>a+t,, then

6>ti-t2>e—a—t220. Thus

In(e -ty) -h(8-t5)| < |h(8-1t;) -h(a)| +|n(a) -h(a-t,)]
< Bla+ty -8)+e < (B+l)e.

(e) a+t,>8.
|n(6 - t,) -n(8-t,)| < Blty -t,| < Be.

Thus for all 8,

|n(e - t;) -n(e - t;] < (B+l)e.

Let de [a,b]. Then there is an 4 such that de(ct,d‘). Let
n>Ny. There is an m such that Dn(e)e(cm,dm). Then

[ (v(a,8) - V(D,(¢),6))aF, (o)

= | [V(d,8) = V(ey,8) + V(ey,8) - V(D (€),0) + V(ey,0)

V(e,,8)1dF, (8)

> =-2(B+l)e + f(V(e,,e) - V(e,,0))dF, (0)

> -2(Btl)e + J'(v(e‘,e) -V(e,,0)) dH(8) - ¢

> -2(B+l)e+ J.(V(e‘,e)-V(em,e))dGn(e)-2e

> -2(B+2)e+ [(V(d,8) - V(D (€),08))dG,(0) - 2(B+1)e
> =-(4B+7)e

i
i
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Then wyn > NO

int [ v(d,0)dF,(0) - Jv(n,(e),0)ar, (8) > - (4B+T)e.
de(a,b]

Now Fn‘&-H, go it D;(e) is a sequence of e-optimal decisions

tor (F,,V) then 3N 3 yn>N, D,(e) e[a,b]. Thus Vn>Max(N,NO),

int [v(d,8)aF, (8) = inf- [v(d,0)aF, (6).
de[a, b] d

Thus yn > Max(N,NO),

J'v(a 8)dF (8) - Jv {e),8)dE (8) > ~ (UB+T)e

Hence

I
o

lim 1im sup inf .[V(D,e)an(e) - J'V(Dn(e),e)an(G)
€VvO n-> o D

Thus (V,H) 1s stable.
Q‘ E. D.

Theorem 3 The pair (V,H) 1is strongly stable if, in addition to

conditions (1) and (ii),tie following condition (iv) obtains:
(iv): there exist r>0 such that h(x)>r|[x|, vx

Proof': Since H 1s a distribution function, we can find b

large enough such that b:>yo, both b and -b are continuity

points of H, and H(b) - H(-b) > B
1 - H(b) r

|
|
|
|



27.

h(-yo)+-h(yo)-+rb-+eo

* 2
Fet B = 0.  and D > o
H(b) - Hfb) i
It is straight forward to show D > Bh > yo .
2
0
n
J (h(e =D ) - n(8-D))dH(B)
-0
~¥ - Yo Yo b D-yo Dy, =
e r r r ¢ r
o B % o * 2 i J * ) i
-0 -b -Yo Yo b D—yo D+yO

h(Aa-D))dH(8) = L+ I+ I+ I+ I+ I+ I

(h(e) -

r-b
I, = ] (h(9) - h(8-D))dH(A) < O.
-yo
1, - J!'b (n(8) - n(8-D))dH(8) < [B(b-y,) +h(-y,) -
5 ¥
r(y,+D)] | au(e) .
b
Yo
;= [ (n(e) -n(e - D))ati(o)
-yo
Yo
< (h(yg) +h(-y0) - r(D-ys)) [ an(e)
—yo
b
Iy=J (n(a) -n(e-D))aH(s) < [h(y,) + B(b-y,) - r(D-b)]
Yo
b
[ dH(a)

g




] (h(e) - h(a-D))dH(8) < (n(yy) +BD) .
D-yO

I, = f (h(e)-—h(e-b))dH(G)‘S BD E dH(8)
D+yO D+yO

Putting all the pieces together, we have

[ (n(e-D") - n(o-D))an(e) <

-00

[B(b-yo)-+h(-yo)-r(yO+D)] J dH(9)
-b
Yo

+ [h(yg) + h(-yg) - r(D-yg)] [ au(e)

b
+ [nlyg) + Bb - r(D=b)) [ ai(e)
Yo

R

aH(e).




+ [h(yy) + BD - ry,) .‘f dH(8)

b
D+yO
+ [h(y,) + BD] f dH(8)
D-yO
’!
+ BD dH(9)
|D+yo

< h(-yo) 4 h(yo) + BD(1 - H(b)) - rD(H(b) - H(-b)) + rb

I

h(-yg) +h(yy) +rb - = (H(b) - H(-b))

-rD(H(b) - H(-b))

h(-yo)-+h(yo)+-rb+-eo
Similarly 1if D < - .

= o

H(b) - H(-b)
then
; (h(9-D") - h(a-D))dH(8) < -e.
-00
S0 any e€-optimal decision De for H must satisfy

b ke h(-yo)-kh(yo)4-rb4-eo . 2
€
r

H(b) - H(-b)

Let b; be a continuity point of H chosen so that b1 > yO and




(H(by) - H(-by))/(1-H(by)) > 1 + 2B
r

Let Jn‘& H. Then & N 3yn > N,

(3,(by) =3, (-0y) /(1 -3 (by))>2B/r

and

Jo(by) =3, (-by) > & (H(by) - H(-by)).

Let m=2(h(-y,) + h(yo)+»rb14-eo)/r. The e-optimal decisions tor :

(J,»V) for all n>N is within
(-m/(3,(by) =T, (-by)), m/(J,(by) -T,(-b5))),
and hence within
(-2m/(H(b,) - H(-b;)), 2m/(H(b,) - H(-b,))).

Thus condition (iii) obtains, and hence (V,H) 1s strongly stable

by Lemma 3. Q.E.D.

Corollary 1

Let 1I(*) be the usual indicator function. Then V(6,D)
= a(A-D)I(6 >D) +b(D-8)I(A<D) 1is strongly stable with any H such
‘\
that JV(B,D)dH(e) is rinite for some D.

When a=Db, V 1in Corollary 1 specializes to absolute error.
The following example shows that conditions (i) and (ii),

and symmetry of h around zero (h(x)=h(-x) are not sufficient

to assure strong stability of (V,H).




Example 6

»
i 0 <x<1
1 108 e e e ax(ogl
h(X) oy (X-2j‘j+1)‘ 2‘.-}- (J—l)'j-i' if 2JJ+1 <X 3JJ+1 - J(J 1)3-1
J
L 39 1r 339" C 5(3-1)9 T exca(gapte

and let h(-x) = h(x).

Then h 1is continuous, symmetric, piece-wise linear, non-
decreasing in (0,»), non-increasing in (-«,0), and satisfies
h(0) =0 and the Lipschitz condition. Now let H be the distribution
function of the random variable sure to -take the value 6 =0, and
let G,® H. Let Fn(e) be a convex combination of H(8) and

Jn(Q) with weights (1 -10 and i, where Jn(o) is the distribu-

n n
tion function of the random variable sure to take the value

3(nn+1)._ n(n-l)n'l :

w
Then F, > H, and D (e)e(-e,€) where e < 1. Also

[v(e,p (e))aF,(0) - tnt f v(e,D)aF, (8)

[v(o,p,(e))ary(0) - [ vio.2(m)™)ar (o)

2
- -1 n+1
> 2 h(3nn+1 -n(n-i)n 1) -€ - 2 h(}nnJl -n(n-i)n -2n )
s n
= n-1 h(2nn+1)

n




f 32.

w ALt h(nn"'1 -n(n-l)n"i) . h(2nn+1)

n n

Lasciih & dibl il
o}

n n

v

> o L S (n—:l.)n'1 3 T

Thus it is easy to see that (V,H) 1is unstable in this case.

Theorem 4 (V,H) 1is strongly stable if, in addition to assumptions

(i) and (ii), the following condition (v) is satisfied:

(v) h(x) = n(-x), h 1is unbounded, and h(x+y) <h(x) +h(y),

for x, ¥ > O.

Proof:

Our strategy is to apply Lemma 3 by proving condition (1iii).

Choose eo>0, and € such that O < € < €q°

Since H 1is a distribution, there exists a positive number b
such that H(-b) < 1/4, H(b) > 3/4, b > Yo @nd b and -b are
continuity points of H. Since h(x) 1is unbounded, there is a

D. >0 such that

0
h(Dy) > 2h(b) + Bb + Heg.

Now we will show that D*=O is better, by at least €, than

any I.)>b+Do or any D<K -b =~ DO. Suppose first that D>b+DO. Then

I= f v(e,D")dH(A) - f v(e,D)dH(3)

-b & rb
= | (n(e-") -n(e-p))an(e) + |

b(n(e-D*)--h(e-D))uH(e)
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=1 h(6-D") - h(8-D)) dH(8) = I, + I, + tge
b

-b i
S " (h(e-D ) -h(e-D))dH(8) < ©

- 00

since h(8-D°) - h(8-D) < 0 if @ 1if 8e (-x,-b).

In the second region of integration, (-b,b), we have

-b < 8-D'< b. Then h(8-D")<h(b). Also 8-D<b=(b+Dy)=-D,<O0.

Hence

b *
I, = J' (h(e-D ) -nh(8-D))dH(8)

ob
| (h(b) - h(b-D))dH(8)

IN

= [n(b) - n(D-b)][H(b) - H(-b )]

< #[nh(b) - n(D-b)].

Ty s 1‘: (n(8-D") - n(e-D))dH(e)

IN

r h(D-D")dH(8)
b

1
< I; h(D)

Hence

R Tl I, + I}
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#[nh(b) - h(D-b)] + %h(D)

In

= #n(b) - %h(D-b)»+% (n(D) - h(D-b))

I

ah(b) - In(p-b) + imb
4 4

S-eo.

Thus the e-optimal decision for H cannot be greater than
b+DO. Similarly it cannot be smaller than -b~DO. Consider now the

sequence Gn:"-’b H.  Fhere vista point b such that both b1 and

1L
-b; are continuity points of H satisfying b, >b, H(bl)Z"(‘/8,

and H(-b;) < 1/8. Let D; satisfy

h(D;) > 2h(by) + Bby + le.

Since Gnq» H, there is an N such that yn>N, Gn(—bi) <1/4
2

and G (b;) > 3/4. Then for all such n, D,(e) € (-by =D;, by +D,).

Lemma 3 now applies, so (V,H) 1is stable.
Q.EIDI

Corollary 2: If V(8,D) = |8 -D|P O<Kp<Ll then (V,H) is

strongly stable. The next example shows the eftect of asymmetry.

Example 7: Let V(e8,D) = h(8-D), where

xi x > O
h(x) = 23

1|12 x<o
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Then let H(®) and G,(8), F (8) be the same as in example 6
except now Jn(e) is the distribution function of the random

variable sure to take the value 16nu. It can be shown that

(V,H) is unstable in this case.

e ————

S



6.

Conclusion

ond
We are studying the;ga particular kind of continuitx, a kind ﬁ
we Judgeite»b§>important especially ac a prologue to attempting .
elicitation of prior distributions and utility tunctions. There
are other kinds of continuity that are alternatives to those we-have,
chosen, and which also deserve studys™ f
We believe that stability, as_defined inithis paper, offers
the beginning of a Bayesian approach to robustness. We note that.
on the real line, squared error loss is never stable, while absolute
error is strongly stable for all opinions H. While the approach in
this paper is more mathematical than some other approaches to

robustness, which may be a disadvantage, it has the advantage of starting

from a clear philosophical foundation, namely personalistic

Bayesianism.
A
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